Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2313849, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38465849

RESUMEN

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen. Here we report the refined single-particle cryo-electron microscopy (cryo-EM) structure of the inactivated mature TBEV vaccine strain Sofjin-Chumakov (Far-Eastern subtype) at a resolution of 3.0 Å. The increase of the resolution with respect to the previously published structures of TBEV strains Hypr and Kuutsalo-14 (European subtype) was reached due to improvement of the virus sample quality achieved by the optimized preparation methods. All the surface epitopes of TBEV were structurally conserved in the inactivated virions. ELISA studies with monoclonal antibodies supported the hypothesis of TBEV protein shell cross-linking upon inactivation with formaldehyde.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Humanos , Anticuerpos Antivirales , Microscopía por Crioelectrón , Vacunas de Productos Inactivados , Formaldehído
2.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 44-59, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164954

RESUMEN

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Vacunas , Humanos , Encefalitis Transmitida por Garrapatas/prevención & control
3.
Bioorg Med Chem ; 98: 117552, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128296

RESUMEN

Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.


Asunto(s)
Adenosina/análogos & derivados , Virus de la Encefalitis Transmitidos por Garrapatas , Virus del Nilo Occidental , Humanos , Paladio , Antivirales/farmacología , Antivirales/química
4.
Emerg Microbes Infect ; : 2290833, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073510

RESUMEN

AbstractThe main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far Eastern subtype. A 3.8  Šresolution reconstruction reveals the structural integrity of the envelope E proteins, specifically the E protein ectodomains. The comparative study shows high structural similarity to the previously published structures of the TBEV European subtype strains Hypr and Kuutsalo-14. A fraction of inactivated virions exhibits asymmetric features including the deformations of the membrane profile. We propose that the heterogeneity is caused by inactivation and perform a local variability analysis on the small parts of the envelope protein shell to reveal membrane curvature features possibly induced by the inactivation. The results of this study will have implications for design of novel vaccines against diseases caused by flaviviruses.

5.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445937

RESUMEN

Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaffolds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a series of 3-[N,N-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl group or 1,2-annulated cyclooctane ring were also investigated. Almost all the studied 3-[N,N-bis(sulfonyl)amino]isoxazolines revealed antiviral activity against TBEV and WNV. The most active against TBEV was spiro-isoxazoline derivative containing p-nitrophenyl groups in the sulfonyl part (EC50 2.0 ± 0.5 µM), while the highest potency against WNV was found for the compounds with lipophilic substituents in sulfonyl moiety, naphtyl being the most favorable one (EC50 1.3 ± 0.5 µM). In summary, two novel scaffolds of anti-flaviviral agents based on N,N-bis(sulfonyl)amino]isoxazoline were proposed, and the compounds of this type demonstrated activity against TBEV and WNV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Fiebre Amarilla , Humanos , Anticuerpos Antivirales , Reproducción
6.
Arch Pharm (Weinheim) ; 356(7): e2300027, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37138375

RESUMEN

Tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and West Nile virus (WNV) are flaviviruses causing emerging arthropod-borne infections of a great public health concern. Clinically approved drugs are not available to complement or replace the existing vaccines, which do not provide sufficient coverage. Thus, the discovery and characterization of new antiflaviviral chemotypes would advance studies in this field. In this study, a series of tetrahydroquinazoline N-oxides was synthesized, and the antiviral activity of the compounds was assessed against TBEV, YFV, and WNV using the plaque reduction assay along with the cytotoxicity to the corresponding cell lines (porcine embryo kidney and Vero). Most of the studied compounds were active against TBEV (EC50 2 to 33 µM) and WNV (EC50 0.15 to 34 µM) and a few also demonstrated inhibitory activity against YFV (EC50 0.18 to 41 µM). To investigate the potential mechanism of action of the synthesized compounds, time-of-addition (TOA) experiments and virus yield reduction assays were performed for TBEV. The TOA studies suggested that the antiviral activity of the compounds should affect the early stages of the viral replication cycle after cell entry. Compounds with tetrahydroquinazoline N-oxide scaffold show a broad spectrum of activity against flaviviruses and represent a promising chemotype for antiviral drug discovery.


Asunto(s)
Culicidae , Virus de la Encefalitis Transmitidos por Garrapatas , Garrapatas , Virus del Nilo Occidental , Animales , Porcinos , Anticuerpos Antivirales , Relación Estructura-Actividad , Antivirales/farmacología , Reproducción
7.
Arch Virol ; 168(3): 100, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871232

RESUMEN

Introduction of point mutations is one of the forces enabling arboviruses to rapidly adapt in a changing environment. The influence of these mutations on the properties of the virus is not always obvious. In this study, we attempted to clarify this influence using an in silico approach. Using molecular dynamics (MD) simulations, we investigated how the position of charge-changing point mutations influences the structure and conformational stability of the E protein for a set of variants of a single TBEV strain. The computational findings were supported by experimental evaluation of relevant properties of virions, such as binding to heparan sulfate, thermostability, and susceptibility of the viral hemagglutinating activity to detergents. Our results also point to relationships between E protein dynamics and viral neuroinvasiveness.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Mutación Puntual , Mutación , Simulación de Dinámica Molecular , Factores de Transcripción
8.
Antiviral Res ; 209: 105508, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581049

RESUMEN

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Asunto(s)
COVID-19 , Perileno , Humanos , Antivirales/farmacología , Antivirales/química , Uracilo/farmacología , Perileno/farmacología , SARS-CoV-2
9.
Biomedicines ; 10(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36289740

RESUMEN

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

10.
Toxicol In Vitro ; 82: 105355, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35390475

RESUMEN

One of the promising approaches in the development of nucleoside prodrugs is to use the nucleoside analogs containing lipophilic biodegradable residues, which are cleaved to biologically active forms after metabolic transformations in the cell. The introduction of such fragments makes it possible to reduce the general toxicity of the drug candidate and increase its stability in the cell. In order to study the influence of biodegradable lipophilic groups on antiviral activity and cytotoxicity, in this work we synthesized N6-benzyl-2',3',5'-tri-O-nicotinoyl adenosine and N6-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine, derivatives of N6-benzyladenosine (BAR) and N6-(3-fluorobenzyl)adenosine (FBAR), which had previously shown prominent antiviral activity against human enterovirus EV-A71 but appeared to be cytotoxic. The obtained fully-O-nicotinoylated BAR and FBAR inhibited reproduction of EV-A71 strains BrCr and 46973 and manifested significantly lower cytotoxicity compared to non-protected compounds. In addition, we performed enzymatic hydrolysis of the fully-O-nicotinoylated FBAR in the presence of esterases (CalB and PLE) to investigate metabolic degradation of O-nicotinoylated compounds in cells. Both enzymes hydrolyzed the tested substrate to form the corresponding O-deprotected nucleoside that may suggest the role of hydrolase-type enzymes as general participants of metabolic activation of O-nicotinoylated prodrugs in different cells.


Asunto(s)
Enterovirus Humano A , Profármacos , Ribonucleósidos , Adenosina/farmacología , Antivirales/toxicidad , Compuestos de Bencilo , Enterovirus Humano A/fisiología , Humanos , Nucleósidos , Profármacos/farmacología , Purinas , Ribonucleósidos/farmacología
11.
Microsc Res Tech ; 85(2): 562-569, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34498784

RESUMEN

The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ß-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.


Asunto(s)
COVID-19 , Propiolactona , Animales , Chlorocebus aethiops , Humanos , Pandemias , SARS-CoV-2 , Vacunas de Productos Inactivados , Células Vero
12.
Front Pharmacol ; 12: 773198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938188

RESUMEN

The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, Mpro, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific Mpro inhibitors have turned out to be promising anticoronaviral agents. Thus, an effective platform for quantitative screening of Mpro-targeting molecules is urgently needed. Here, we propose a pre-steady-state kinetic analysis of the interaction of Mpro with inhibitors as a basis for such a platform. We examined the kinetic mechanism of peptide substrate binding and cleavage by wild-type Mpro and by its catalytically inactive mutant C145A. The enzyme induces conformational changes of the peptide during the reaction. The inhibition of Mpro by boceprevir, telaprevir, GC-376, PF-00835231, or thimerosal was investigated. Detailed pre-steady-state kinetics of the interaction of the wild-type enzyme with the most potent inhibitor, PF-00835231, revealed a two-step binding mechanism, followed by covalent complex formation. The C145A Mpro mutant interacts with PF-00835231 approximately 100-fold less effectively. Nevertheless, the binding constant of PF-00835231 toward C145A Mpro is still good enough to inhibit the enzyme. Therefore, our results suggest that even noncovalent inhibitor binding due to a fine conformational fit into the active site is sufficient for efficient inhibition. A structure-based virtual screening and a subsequent detailed assessment of inhibition efficacy allowed us to select two compounds as promising noncovalent inhibitor leads of SARS-CoV-2 Mpro.

13.
J Gen Virol ; 102(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34546870

RESUMEN

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.


Asunto(s)
Adamantano/farmacología , Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/virología , Isoxazoles/farmacología , Virión/fisiología , Adamantano/metabolismo , Animales , Antivirales/metabolismo , Línea Celular , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Glucósidos/metabolismo , Isoxazoles/metabolismo , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Porcinos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Ensayo de Placa Viral , Virión/inmunología , Virión/patogenicidad , Virión/ultraestructura
14.
Eur J Med Chem ; 220: 113467, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33894564

RESUMEN

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic. The antiviral activity was assessed against a structurally and phylogenetically diverse panel of RNA and DNA viruses from 25 species. Four compounds (11a-c, 12c) inhibited 4 DNA/RNA viruses with EC50 ≤ 20 µM. Toxicity of the compounds for the cell lines used for virus cultivation was negligible in most cases. In addition, previously reported and newly synthesized phenoxazine derivatives were evaluated against SARS-CoV-2, and some of them showed promising inhibition of reproduction with EC50 values in low micromolar range, although accompanied by commensurate cytotoxicity.


Asunto(s)
Antivirales/farmacología , Virus ADN/efectos de los fármacos , Nucleósidos/farmacología , Oxazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/toxicidad , Línea Celular Tumoral , Chlorocebus aethiops , Perros , Humanos , Células de Riñón Canino Madin Darby , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/toxicidad , Oxazinas/síntesis química , Oxazinas/toxicidad , Relación Estructura-Actividad , Células Vero , Replicación Viral/efectos de los fármacos
15.
Antivir Chem Chemother ; 28: 2040206620943462, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32811155

RESUMEN

Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein n-octyl-ß-d-glucoside (ß-OG) pocket, were reported earlier. In this work, these inhibitors were tested in vitro against seven strains representing three main TBEV subtypes. The most potent compound, 2-[(2-methyl-1-oxido-5,6,7,8-tetrahydroquinazolin-4-yl)amino]-phenol, showed EC50 values lower than 22 µM against all the tested strains. Nevertheless, EC50 values for virus samples of certain strains demonstrated a substantial variation, which appeared to be consistent with the presence of E protein not only in infectious virions, but also in non-infectious and immature virus particles, protein aggregates, and membrane complexes.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Óxidos/farmacología , Pirimidinas/farmacología , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
16.
ACS Omega ; 5(25): 15039-15051, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32632398

RESUMEN

Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery.

17.
Mol Inform ; 39(12): e2000080, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32363750

RESUMEN

Discovery of drugs against newly emerged pathogenic agents like the SARS-CoV-2 coronavirus (CoV) must be based on previous research against related species. Scientists need to get acquainted with and develop a global oversight over so-far tested molecules. Chemography (herein used Generative Topographic Mapping, in particular) places structures on a human-readable 2D map (obtained by dimensionality reduction of the chemical space of molecular descriptors) and is thus well suited for such an audit. The goal is to map medicinal chemistry efforts so far targeted against CoVs. This includes comparing libraries tested against various virus species/genera, predicting their polypharmacological profiles and highlighting often encountered chemotypes. Maps are challenged to provide predictive activity landscapes against viral proteins. Definition of "anti-CoV" map zones led to selection of therein residing 380 potential anti-CoV agents, out of a vast pool of 800 M organic compounds.


Asunto(s)
Antivirales/farmacología , Simulación por Computador , Infecciones por Coronavirus/tratamiento farmacológico , Descubrimiento de Drogas , Relación Estructura-Actividad Cuantitativa , Proteínas Virales/química , Animales , Antivirales/química , Coronavirus/efectos de los fármacos , Humanos , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Bioorg Med Chem Lett ; 30(10): 127100, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32199731

RESUMEN

Rigid amphipathic fusion inhibitors are potent broad-spectrum antivirals based on the perylene scaffold, usually decorated with a hydrophilic group linked via ethynyl or triazole. We have sequentially simplified these structures by removing sugar moiety, then converting uridine to aniline, then moving to perylenylthiophenecarboxylic acids and to perylenylcarboxylic acid. All these polyaromatic compounds, as well as antibiotic heliomycin, still showed pronounced activity against tick-borne encephalitis virus (TBEV) with limited toxicity in porcine embryo kidney (PEK) cell line. 5-(Perylen-3-yl)-2-thiophenecarboxylic acid (5a) showed the highest antiviral activity with 50% effective concentration of approx. 1.6 nM.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Perileno/química , Garrapatas/virología , Animales , Antivirales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Perileno/farmacología , Relación Estructura-Actividad , Porcinos , Replicación Viral/efectos de los fármacos
19.
Sci Rep ; 9(1): 12066, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427609

RESUMEN

Humic substances (HS) are complex natural mixtures comprising a large variety of compounds produced during decomposition of decaying biomass. The molecular composition of HS is extremely diverse as it was demonstrated with the use of high resolution mass spectrometry. The building blocks of HS are mostly represented by plant-derived biomolecules (lignins, lipids, tannins, carbohydrates, etc.). As a result, HS show a wide spectrum of biological activity. Despite that, HS remain a 'biological activity black-box' due to unknown structures of constituents responsible for the interaction with molecular targets. In this study, we investigated the antiviral activity of eight HS fractions isolated from peat and coal, as well as of two synthetic humic-like materials. We determined molecular compositions of the corresponding samples using ultra-high resolution Fourier-transform ion cyclotron resonance mass-spectrometry (FTICR MS). Inhibitory activity of HS was studied with respect to reproduction of tick-borne encephalitis virus (TBEV), which is a representative of Flavivirus genus, and to a panel of enteroviruses (EVs). The samples of natural HS inhibited TBEV reproduction already at a concentration of 1 µg/mL, but they did not inhibit reproduction of EVs. We found that the total relative intensity of FTICR MS formulae within elemental composition range commonly attributed to flavonoid-like structures is correlating with the activity of the samples. In order to surmise on possible active structural components of HS, we mined formulae within FTICR MS assignments in the ChEMBL database. Out of 6502 formulae within FTICR MS assignments, 3852 were found in ChEMBL. There were more than 71 thousand compounds related to these formulae in ChEMBL. To support chemical relevance of these compounds to natural HS we applied the previously developed approach of selective isotopic exchange coupled to FTICR MS to obtain structural information on the individual components of HS. This enabled to propose compounds from ChEMBL, which corroborated the labeling data. The obtained results provide the first insight onto the possible structures, which comprise antiviral components of HS and, respectively, can be used for further disclosure of antiviral activity mechanism of HS.


Asunto(s)
Antivirales/química , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Sustancias Húmicas/análisis , Suelo/química , Antivirales/análisis , Antivirales/farmacología , Biomasa , Carbón Mineral , Minería de Datos , Bases de Datos de Compuestos Químicos , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Humanos , Reproducción/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
20.
Int J Mol Sci ; 20(9)2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31035389

RESUMEN

The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors-sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors-response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and vice versa. In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog. Our study was aimed at explaining by molecular modeling the observed features of in planta protein-protein interactions, accompanying CK signaling. For this purpose, models of CK-signaling proteins' structure from Arabidopsis and potato were built. The modeled interaction interfaces were formed by rather conserved areas of protein surfaces, complementary in hydrophobicity and electrostatic potential. Hot spots amino acids, determining specificity and strength of the interaction, were identified. Virtual phosphorylation of conserved Asp or His residues affected this complementation, increasing (Asp-P in HK) or decreasing (His-P in HPt) the affinity of interacting proteins. The HK-HPt and HPt-HPt interfaces overlapped, sharing some of the hot spots. MSP proteins from Arabidopsis and potato exhibited similar properties. The structural features of the modeled protein complexes were consistent with the experimental data.


Asunto(s)
Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología , Modelos Biológicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...